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CHAPTER 1

INTRODUCTION

1.1 Background

Threedimensional (D) system integration is believed to be a promising technology and
has gained tremendous momentuntha semiconductor industry recently. The concept
of 3-D integrated circuits is shown iRigurel. In 3-D ICs, multiple dies are stacked, and
vertical interconnections between dies are realized by thrsilighn vias (TSVS). These
TSVs arethe coe technology that replace long interoests in 2D ICs with short
vertical interconnects. The shortened wian result in low wire delay, less parasitic
effects and higher clock frequeng¢$-3] than 2D ICs, thereby improving the overall
system performancdn addition, it is possible with-B heterogeneous integration to
stack different functional modulesincluding memory, MEMS, antenna, RF,
analog/digitalblocks into a package. Among all the components in tHe 8ystem as
shown inFigurel, the silicon interposer with TSVs anedistribution layerRDL) traces

is a key enabler and thus needs to be carefully designed to achieve opsteal s
performancg4]. As a result, the fast andliable simulation of thénterconnections in

the silicon interposer isa necessity to speed up the design cycle time, while maintaining

accuracy of the results.

1.2 Motivation

The sglicon interposer is expected to have high input/output codines wiring lines and
many TSVs Modeling and design dhesilicon interposecan be challenging due to the
following reasonsi1) Silicon substrate is not an ideal medium for signal transmission
since the interconnections and TSVs are exposed to additional logsts ldakage. (2)

TSVs are multiscalestructureswith oxide thickness less than one micron and aspect



ratio of 1:20 or higher(3) Hundreds of interconnects routed with fine pitch on silicon
substrate will cause enhanced coupling between signal linesiclwitan introduce
distortion (4) The insulatingoxide layer around TSVs and below the RDL traak®
influence the characteristics of interconnections, causing frequopandent parasitic
effects.(5) Theresistanceind conductance of TSVstsmperatee depedent because of
the temperaturdependent conductivityp]. Moreover, TSVsonnected to multipleohg
RDL transmission lineswill lead to frequent signadia transitios in the silicon
interposey which results in combined signal and power integrity issues.a result,
modeling the interconnect response of higmsity signal paths with TSVs thesilicon

interposer is becoming a critical task.

Heat sink

Analog
EOXONONONON

Digital

RDL traces

Redistribution
Layer (RD
Silicon
Interpose

TSVs

Package Substrate

Figure 1. Silicon interposer with TSVs and RDL traces in 3D systems

1.3 Contributions

This dissertation mainly focaes on developng an efficient modeling approach for

silicon interposesin 3-D systemsThe contributions ofhe research are listed as follows:



1. The investigation of the coupling effects in large TSV arrays. The importance of
coupling between TSVs for low resistivity silicon substsaie quantified both in
frequency and time domanThis has been compared thwihigh resistivity silicon
substrate. The comparison between the two indicates the importance of jitter and voltage
analysis in TSV arrays for low resistivity silicon substrates due to enhanced coupling.

2. The development of an electromagnetic modedipgroach for nomniform TSVs. To
model the complex TSV structures, an applotor modeling conical TSVs roposed

first. Later a hybrid modeling method which combines the conical TSV modeling method
and cylindrical modeling method is proposed to maldelnoruniform TSV structures.

3. The development of a hybrid modeling approach for power delivery neswBiBN)

with throughsilicon vias (TSVs). The proposed approach extends faykir finite
difference method (MFDM) to include TSVs by extractingeir parasitic behavior using

an integral equation based solver. Using the proposed modeling technique the
power/signal integrity othe PDN with TSVs/througtglass vias (TGVSs) in lossy silicon
interposes and low loss glass interposeés investigated andompared.

4. The development of an efficient approach for modeling signal paths with TSVs in
silicon interposes. The proposed method utilizése 3-D finite-difference frequency
domain (FDFD) method to model the redistribution layer (RDL) transmissnas.[iA

new formulation on incorporating multiport netwsrikito the 3-D FDFD formulation is
presented to include the paitec effects of TSV arrays ithe system matrix.

5. The development o& 3-D FDFD nonconformal domain decomposition method
(DDM). The proposed method allows modeling individual domains independently using
the FDFD method with nematching meshing grids at interfacd%is norconformal

DDM is used to model interconnections in silicon interpaser



1.4 Organization of the Dissertation

This dssertation consists ofine chapters. In Chapter 1, the background and motivation,
contributions, and the organization ofstllissertation are introduced. In Chapter 2, the
research problem to be addressed and prios @wat have been developed are
investigated. InChapter 3, the coupling effects in large TSV arraysrarestigatedand

the coupling effects in low resistivity and high resistivity silicon substiate compared.

In Chapter 4a modeling @proach for noruniform TSVs isproposed In Chater 5, a
modeling approachor the power delivery network with TSVs is proposed and the
simultaneous switching nois&$N in silicon and glass interposeare analyzedIn
Chapter 6, an efficient approach for modeling the signal paths with TSVs imsilico
interposes is presented, this approach u$iege-differencefrequency domain (FDFD)
techniquecoupled withanintegral equation based method where the latter is applied to
TSVs. In Chapter 7, the -B® FDFD nonconformal domam decomposition method is
proposed ad used to modelthe interconnections in silicon interposeChapter 8
presents the possible future work. Finally, the conclusion and summary of the research

work in this dissertation are presented in Chapter 9.



CHAPTER 2

ORIGIN AND HISTORY OF THE PRO BLEM

2.1 Introduction

To design higkspeed signal paths with TSVs in silicon interpesand perform
signal/power integrity analysis for3 systems, the electrical model of TSVs must be
obtained using design parameters such as material and geometric irdorrhagn, this
electrical model can be usdéd obtainoverall systemperformance. Therefore, many
approaches have been proposed for modeling and analysis of [RS¥& chapterthe

prior research foelectrical modeling of TSVs ismtroduced.

2.2 Lumped Elementbased TSV Modeling

Figure 2 shows a typical structure of TS{$]. The conductor core of TSV usually is
made of copper or tungsten. A thin oxideer layeris deposited around the conductor.
For the lumped element basd@®V modeling, an equivalent circuit model can be
constructed from physical intuitionsing an RLCG element[7]. The model contains
series resistance and inductance of copper conductors, shunt oxide capacitance, and shunt
silicon admittance. The value of eaabmponent is found by tuning the circuit element to
fit its frequency response with measurement datang the parameter optinziation
method Since this model isot tied to the geometricahd physical parameters of TSVs,
several approaches apresented to obtain the closedm formulae for theRLCG
elements in the equivalent circuit modét1l]. The p -type equivalent circuit is shown

in Figure 3, whereR and L denote the peunit-length(p.u.l.) resistance and inductance

of the TSV, C,, denotes the p.u.tapacitance due to the oxide linand C, and G

denote the p.u.l. capacitance and conductance of the silibstrate. However, these

resistancenductance models were not rigorbusgerivedanddid not consider the nen



uniform current distribution iMSV conductor caused ladjacent TSVstherefore itcan

not capture all the semiconductor effectis equivalentcircuit model was again
investigated in[12], where rigorous closedrm formulae for the resistance and
inductance of TSVs are derivedoiin the magnetguasistatic theory with a Fourier
Bessel expansion approach. This equivatemmuit model can capture the important
parasitic effects of TSVs, includirgkin effect, proximity effect antbssy silicon effects.

It can generate accurate risucomparable to -B full-wave solvers.The equivalent
circuit model is extended ifiL3] to consider all the parasitic compone of the TSV,
wherea scalable eldrical model of TSVs including bump and Riiaceswas proposed
Although lumped element modeling can provide reasonable good results for the insertion
loss, it becomes difficult toextend this method to model large TSV arrays sitioe
current distributon inoneTSV conductor will be affected by all the other adjacent TSVs
and becom® nonruniform in high-density TSV arraysit is difficult to use analytical
eguations taccuratelyaccount for the complex current distribution in TSVs aagture

all the oupling effectdbetweenlTSVs Hence a full wavenalysismethod is required that

is scalake to multiple TSVs as in arrayBecause ofhe multiscale dimensions of TSVs
(oxide thickness and aspect ratithis becomes a very challengitagk and is a majo
bottleneck for commercially avaldéee EM solvers where large arrays of TSVs must be

modeled.
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Figure 2. Typical TSV structure (a) Cross-sectionSEM image of TSVs (b)cross
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Figure 3. A signalground TSV pair (a) Crosssection view (b)p - type equivalent
circuit model



2.3 Electromagnetic Modeling of TSVs

To address the problem of modeling large TSV arrays, a modeling method based on
sol vi ng Max walintegra form agsypmeoposed ifiLl4-16]. In this approah,
specialized basis functions which approximate the current and charge in the TSVs are
derived. Using these basis functions, the electrical response of the structure can be
extracted by sol vi n gnodsliagfloneid shavs ifriguged. dhisi o n s .
proposed method can generate equivaRbhCG parameters of TSVs that represent the
following parasitic elements.

(1) Conductor series resistance and inductance: This represents the loss and inductive
couping in copper conductors, which are due to the volume current density distribution.
The conductor series impedance can be extracted by solving the electric field integral
equation (EFIE) with cylindrical conduction mode basis functions (CMBE)

(2) Substrate parallel conductance and capacitance: This represents the loss and
capacitive coupling between conductor and insulator surfaces, which is produced by the
surface charge density distribution on the conductor and dielectric surfaces. The parallel
admittance can be extracted by solvthg scalar potential integral equation (SPIE) with
cylindrical accumulation mode basis functions (AMBFs). The conductance temnte ca

computed by using the complex permittivity for silicon definethaquation(1) [17]:

e,=ee, (- jtand- j—3) 1)

Sii
where e, is the dielectric constantsis the conductivity of silicon andandis the
intrinsic loss tangent.
(3) Excess capacitance in oxitiger: This represents the effect of the insulator between

conductor and silicon substrate, which originates from polarization current in the

insulator. The new basis functigrsalled polarization mode basis functions (PMBFs)



[15] are proposed to capture the polarizatiomrent density distribution. The excess

capacitance isxtracted by solving EFIE with PMBFs.

Silicon substrate £
Insulat
Con ctor\@ @/
—— b .
- -

Polarization current in oxide modeled with PMBF
0., (for excess capacitance extraction)

Total charge modeled with AMBF
(for parallel C,G extraction) R&IL

‘— —
Conductor current modeled with CMBF -
(For series R, L extraction)

Figure 4. Modeling procedure for 23 2 TSV arrays [16].
All of these elements can capture the -fumiform effect of charge and current

distribution in the TSVs, which depends on the proximity of the neighyp TSV
interconrections. As illustrate in Figure 4, the extracted individual elements are
combined to generate the complete equivalent circuit model of the entire TSV structure.
A major challenge in modeling TSVs arises frone tmultiscale dimensions of TSV
structure due to the thin oxide thickness, aspect ratio and the need fimgadultiple

TSVs. Using thespecialized basis functions described above elimsnidwe need for
meshing the structure and therefasecomputaionally less expensive and memory

efficient.

2.4 MOS Capacitance in TSVs

To obtain a rigorous model of TSVs, the voltatgpendent MOS capacitance of TSVs
should beconsidered.The TSV shown inFigure 5(a) consiss of a cylindrical onductor

surrounded by an oxide liner embedded in a silicon substrate, which is a cylindrical



metaloxide-semiconductor (MOS) structure. Such a TSV under bias condition exhibits a
capacitance behavior similar & plamr MOS capacitof18]. Figure5(b) shows a typical
capacitance ¢, ) plot with change in the gate voltag¥ () for a planar NDS capacitor.

As shown in Figure 5(b), at high gate voltage the MOS capacitance has three

possibilities: deep depletion, high frequency, and low frequency.

1
| Low Freqguency Curve

Accumulation
Region i

Inversion/Deep
Depletion Region

High Frequency Curve

Capacitance (C,)

i Deep Depletion C’urve
Ves V1
Gate Voltage (V)

(b)

Figure 5. (a) Schematic cross section of a TSV biased in the depletion region (b)
Capacitancevoltage plot for a planar MOS capacitor.

1C



The first analytical model fothe MOS capacitance effec proposed in[19]. This
analysis is performed by analytically solwv
approximation (FDA).The FDA simplifies the analysis by assuming that the depletion
region (formed in the semiconductor) is fully depleted (i.e. there are no mobile charge
carriers in the depletion region).

The full depletion approximation enables a simple analysis bute$ dot provide the
most accurate result. A more accurate electruadlel of a TSV is presented[i20]. This
method performs exact analysis by solvingsPsion 6 s equati on numeri c

coordinate usinghe RungeKutta method 21].

2.5 Modeling of RDL traces on silicon interpcser

In the silicon interposer, signal paths often consist of TSVs and RDL transmission lines.
When designing the signal paths with TSVsairsilicon interposer, the RDL is an
essential component that should be considered with the TSV. Therefore, mauaeling
aralysis of RDLsis alsoimportant for 3D system desigAn analytical model foa RDL
is proposed if13]. In this approachRDL tracesare modeled using alyéical equations.

A RDL structureon a dielectric layemwith structure parameteis shown inFigure6 and

the proposed equaent circuit model is shown iRigure7. An dectrical model of the
signal @mths inthesilicon interposer can be obtained by combing this analytical model of
RDLs withthe analytical model of TSVs discussed in the previous section. However, this
model is mostly analytical and liteid to a few interconnectsffi€ient approachesor

modeling a large number of RDLs and TSkereforeneed to be investigated.
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Figure 6. RDL structure on dielectric layer with its structure parameters

o C 0

RDL
1!
]

_TO_SUB

Figure 7. The equivalent circuit modelof the RDL traces.

12



2.6 Technical Focus of This Dissertation

The investigation of the prior arts for TSV modeling provides the understanding of the
advantages and limitations of existing modeling techniqi®¥gth the evolution of D
integration, efficient modeling tools are needed to facilitae 1€ designs. The technical
focus of this dissertation is summarized as follows:

1. The investigation of the coupling effects in large TSV arrays. The importance of
coupling in large TSV arrays is quantified in both time domain and frequency domain.

2. The development of modeling approacfor nonuniform TSVs

3. The development of a hybrid modeling approachafppower delivery network with
TSVs.

4. The development adin efficient approach for modeling signal paths with TSVs in
silicon intermpses.

5. The development dhe 3-D FDFD nonconformal domain decomposition method and

its application for modeling interconnections in silicon interpgser

2.7 Summary

This chapterintroduces the origin and history of the research. It reviews previous
modeling approaches for the interconnections in silicon interp&reral lumped
TSV/IRDL modeling approaches are briefly introducadd later an electromagnetic
modeling approach fofSVs arrays is investigatedhe advantages and limitations of
these previous modeling approaches are also providEae limitations of existing
modeling approachésr the interconnections in silicon interposeotivatethe technique

research in this dsgrtation.
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CHAPTER 3
COUPLING ANALYSIS OF LARGE TSV ARRAYS USING

SPECIALIZED BASIS FUNCTIONS

3.1 Introduction

A TSV pair with dimensions is shown Figure 8. Unlike vias in packageand PCBs,
TSVs are embedded ialossy silicon substte and surrounded by a thoxide liner.
Therefore,the TSV-to-TSV coupling path will includehe TSV conductor, oxide liar,
and silicon substrate, which mmore complicated and significant than traditional wire
coupling[22]. The coupling of the TSV pair shown kigure8 is examined anérigure
10(a) shows the codmg S-parameter of thigSV pair. We use this TSV pair to perform
transient simulatiomnd obtan the coupled noise at the victim TSWM.he configuration

of the transient simulatiois shown inFigure9 and the simulation results show that the
coupled noisean reach upot 150mV, which can not be neglectex shown irFigure

10(b).

radius: 15um oxide: 0.1um

conductor conductor

height: 100um

Y

\

pitch: 80um TSV cross-section view

Figure 8. TSV pair with dimensions
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Voltage amplitude: 1V

S I
+ R=50 Ohm T R=50 Ohm
v i
B é 2 77 Coupled noise

Terminated with 50 Ohm resistance

Figure 9. Transient simulation setup for TSV pair.
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Figure 10. (a) Coupling for TSV pair, (b) Coupled noise obtained at TSMW2.
Because othe high integration density of interconnections in 3D stacked ICs, a large
number of TSVs need to be used in the silicon interposer packageoupling between
TSVs in TSV arrayvecome more complicated since one victim TSV saaunded by
many aggressor TSVs, therefore, it is very difficult to estimate the coupling in large TSV
arrays. This chapter focuses on analyzing TSV arrays and provides details on the

coupling effecsin large TSV arrayf23, 24].
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3.2 TSV Modeling With Cylindrical Modal Basis Functions

This section describes the TSV madglmethod used in TSV array coupling analysis.
This method can generate equivaldRiLCG parameters of TSVs by classifying TSV
structures into the following three parts: (1) Conductor series resistance and inductance:
this represents theesistive loss and inductive coupling of the copper conductor, which
can be extracted by usirige electric field integral equation (EFIE) [3] with cylindrical
conduction mode basis functions (CMBFs) [4], (2) Substrate parallel conductance and
capacitancethis represents the resistive loss and capacitive coupling in the substrate,
which can be extracted by usirtbe scalar potential integral equation (SPIE) with
cylindrical accumulation mode basis functions (AMBFs) [5], (3) Oxide liner excess
capacitancethis represents the capacitive coupling between the conductor and substrate,
which can be extracted by usitige EFIE with new basis functions called polarization
mode basis functions (PMBFs).

Since the details of the modeling are discussed in previots |2 we briefly describe

the three pds of the extraction procedunsing different basis functions.

3.2.1 Conductor Series Resistance and Inductance Extraction

The EFIE equation used in the inductance and resistance extraction is given by [5]

I, I PRI Eavi=- 8w 2)

Vi

The current density of a conductor segmeocan be approximated using the following

equation
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Ji(r,W) @& 1 pqWina(r, 1) 3)

Where\X/,-nq(F, w)is the basis function in conductor segmjewith ordern and orientation

g
After insertingthe approximatior§3) into the current density term ({2) and applying the

inner produc(4) based on Galerkia method,

o

(W (F, ), X) = (7, ) GV 4)

\%

the following equivéent voltage equatio(b) can be obtained.

a I janmd,jnq + J M/a I jnqLimd,jnq = D\/n'Jnd (5)
nq

n.q

—*

1 - — -
where Rmd,jnq = ; ﬁNimd (ri , ’/V) ®VJHQ(r i VV) y

Vi

m . = - = = 1
Lind.jng = E N 7V ima (ri, W) Qujng(r ;, I/I/)mdvjd\/i
Vi V i j

and
| 1 e o
D\/iéd:-;ﬁ:j(ri)Wimd(l’i,W)QjS
S

In the aboveequations,i, m, d representthe index ofthe inductive cell, the order of

CMBF and the orientation of CMBFespectiver.med(ri,m is the cylindrical CMBF

with the (i, m, d)-th order.
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3.2.2 Substrate Parallel Conductance and Capacitance Calculation

The SPIE equation used for substrate felraonductance and capacitance calculation is

expressed as:

%@Vﬁs(iﬁ)q(ﬁ, wadVi=F(r,w) (6)

By inserting the charge density distributiumction q= a s QunVing@nd appling the

inner produt

(Vina (7,10, X) = Py (T, 1) XS @)

the following equatior8) can bededuced fronthe SPIE(6).

a R(?n(?lnq an = E[()i (8)

Inq

~ T |
where Pk?m?lnq = n ﬁ/ md(rk)vlnq(rl)ﬁ .
3 S

n-,
Here k,m,drepresent the index @he conductor number, modal order and orientation

respetvely. F{&EMB the partial potential coefficient between thg,md)-th and

(I,n,g)-th order modes. The superscrifisand D represent the conductor surface and

insulator sufaceof the TSV, respectively.

3.2.3 Oxide Liner Excess Capacitance Extraction

The EFIE equation used for the extraction of the excess capacitance in oxide liner is

given by
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IFEw _. 9)
wele.- &) +jW4pr|F5(r r|)J (I’|,W)dV| H?(r w)

Using a similar process as for inductance and resistance extradhenfollowing

equation(10) can bededuced fron{9), expressed as

a Ilan a JM’Lkmd Inq Ing — ﬁkad CQ g)d\/ (10)
I,n,q JM’Ckmd Ing l.ng
where lexdln - _e>0(eo?<._: esi)
K {Hkma @ingdV,

and

I-kmdlnq n ﬁ;(rk!rl)ukmd(rk)mlnq(rl) 1 dVdV
! o

Here k,m,dalso represent the index of conductor nemimodal order and orientation
respectively.

Equationg(5), (8), and(10) can be combined into a large matrix equation, which relates
the terminal currents and nodadltages to the modal circuit elements consisting of the
conductorR-L elementsthe parallel conductance and capacitancehi& substrateand

the excess capacitance the oxide liner.Sincethis TSV modeling method uses a small
number of global modal bas functions, it ismore efficient than the full wave
commercial EM solvers available and has beenetated with other results ifl6].
Moreover, gce this methodsi scalable, it can be easily extended to arrays of TSVs. In
the following section, the TSV modeling method descrilsedsedto obtain themodel

for a large TSV arraywhich has then beensedfor coupling analysis ithis chaper.
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3.3 Characteristics of Couged Waveform in TSV Array

The flow of the proposetransientcoupling analysis approach is sho in Figure 11.

This method starts by obtaining a TSV array frequency domain model. Once the model is
obtained, it is converted to giSe subcircuit model which can be used for time domain
simulation in Hgice. This is done using Idef5] which enables the development of a
macromodel by preserving passivity and causality. After generating the Spiceib
model, the effects ovaveformcouplingin the TSV arraycan be obtained by performing

time domain simulationAll transientsimulations are performed using Hspice.

%tep 1: Generae TSV array model usina
the integral equation based TSV modelin
(method describedin Section3.2

Il

%tep 2: Convert the TSV array model to ¢
Spice subcircuit model using ldemfor time
([domain simulation.

J

II ’
%tep 3. Excite a pulse waveform at tr
flaggressor TSVo and
waveform at nearby

Figure 11. Modeling flow for coupled TSV analysis.

The structurfor TSV coupling analysis ishown inFigure 12. To perform coupling
analysis, a TSV array model is first generated using the integral equation based TSV
modeling méhod described in Sectidh2[16]. In thisexample, we generates® 5TSV
array model of the struste shown inFigure12. The dielectric constants of silicon and

silicon dioxide used were 11.9 and 3.9, respectively. The copper conductivity used is
s =5.8310'S/m. The TSV diameter, substrate thickness and oxide thickness ame,20
200rmmand 0.1rm, respectively. Before performing the trament analysis, the -S

parameter model of the TSV arrays obtained using the modeling approach is examined
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oxide thickness=0.1um

silicon

height=200um

diameter=20 um

Figure 12. 53 5TSV array structure.
The coupling between TSY andother TSVs (TSV2, TSV-3, TSV-5, TSV-25)is shown
in Figure 13. The frequency range fsom 1000 Hz to 10 GHz. It can be seen that the
isolation is hi¢n and the coupling haa sharp slopet low frequency As frequency
further increases, it showspmsitive ramp indicating that the coupling increases with
frequency.
Theinsertion loss off SV-1 is shown inFigure 14. It illustrates thathere is significant
signal loss anthe insertion loss increasezpidly to 1.1 dB at 1 GHZThe sharp slope of
the insertion loss at low frequency is due to the small dkiee thickness resultingn a
larger oxide capacitancerhich provices a leakage path to the silicon substfa&. As
frequency increasethe insertion loss showsnegativeslope indicating the signal loss

increass with frequency.

-20
-30—_
-40—

dB(S, 28)
dB(S, s)

dB(S, 3)

=Y
[=Y
(@)

4 5 6
Freq (GHz)

Figure 13. Coupling between different TSV pairs
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Figure 14. Insertion loss of TS\A1.
The structurefor TSV coupling analysis ishe same asshown in Figure 12. The
configuration of TSVs irthe couding analysis is shown ifkigure15. In the TSV array,
TSV-1 is defined ash a g g r BS¥& which is excited with one pulse with 2 V
magnitude andO ns width. The pulse rise and fall timmare both 0.1 ns. All the other
TSVs other than ground TSVs in the array are ddfiagi v i cTSVsinwhich are

terminated with 50 Ohm resissawn both sides,sashown inFigurel5.

Pulse amplitude 2V

—-+50 Ohm — Terminated
resistor to ground
'

50 Ohm Termmated
resistor ~ to ground
AAggressor TS\W fiVictim TSV o AGround TSVO

Figure 15. Configuration of TSVs in coupling analysis.
Three different test cases are simulated and compaesili¢on substrate conductivity

is 10 S/m and no ground TSV is usefy) silicon substrateonductivityis changed to
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0.01 S/mand no ground TSV is usef;) silicon substrate conductivity is 18/m and

ground TSVsre usedas shown ifrigure16.

Figure 16. Positions of the ground TSVs in Case (c).
In Case (a),TSV-2, TSV-7 and TSV-25 are selected to observe ttmupledwaveform
from aggressofm SV-1. The coupéd waveform results are shown Figure17. Ascan be
observed fronFigure 17, with substrate conductivitgpf 10 S/m, the peak amplitudes of
the coupled waveform at TS¥, TSV-7 and TSW¥25 are 95 mV, 35 mV and 7 mV,
respectively.The coupling is morebvious atthe adjacenfTSVs (TS\2 and TSV7) of
the aggressofSV-1 due to shorter distancMost importantly, it is observed thall a
these coupled waveforms have a very long tail, and the farther thefrb8V the
aggressor TS\, the longer is the tail. Hencée time constant of the coupled waveform
increases with the distance to the fAaggr es
capacitive nature of sdon. The long tail of the coupled wavefosntan havea
detrimental effect on the signal integrity of tegicon interposersince the effect of
coupled noise is present on the coupled TSV for an extended period of time. Such an
effect will never be seen in low loss dielectrics such as in organic/ceramic packages or

printed circuit boards.
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